
THE 11TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS 2005 1

Increasing Resiliency through Priority Scheduling of
Asynchronous Data Replication

Kevin P. Adams

NSWC
Dahlgren Division

AdamsKP@nswc.navy.mil

Denis Gračanin
Department of Computer Science

Virginia Tech
gracanin@vt.edu

Michael G. Hinchey
NASA Software Engineering Lab

Goddard Space Flight Center
Michael.G.Hinchey@nasa.gov

Abstract

Distributed systems commonly replicate data to en-
hance system dependability. In such systems, a logical
update on a data item results in a physical update on a
number of copies. The synchronization and communi-
cation required to keep the copies of replicated data
consistent introduces a delay when operations are per-
formed. In time-constrained systems or systems dis-
tributed over a bandwidth-constrained area, such op-
erational delays generally prove unacceptable. Asyn-
chronous data replication is commonly used to miti-
gate these delays. We look to develop a general solu-
tion for the introduction of an adaptive data replication
scheduler to optimize asynchronous replications based
on a user-developed priority model in overloaded
situations. The solution uses a Multi-Layer Perceptron
neural network to mimic the behavior of a historically
optimal scheduler through functional approximation
with its evaluation through simulation.

1. INTRODUCTION
A system replicating data asynchronously will repli-

cate on a first-come first-served basis (FCFS) relative
to the replication request. This is common in commer-
cial asynchronous replication products such as those
used in data vaulting where replications are scheduled
to occur at predetermined times. The time period be-
tween the invocations of a replication on the same rep-
lication object is considered the replication interval.
The term “replication object” is used to define a set of
files that should be replicated together, thus having the
same recovery point objective (RPO). This solution
works fine as long as the system operates in an under-
loaded or fully-loaded condition.

In an over-loaded condition, a replication cannot
complete during its replication interval. Current solu-
tions allow (1) the current replication to be aborted; (2)
the current replication to complete with the next replica-
tion of the object queued; and (3) the current replication
is allowed to complete, skipping the next replication of

the object. If the current replication is aborted, the up-
dates propagated in the new replication must be recalcu-
lated from the last successful update. This approach does
prevent queuing of replications, but has the potential of
additional data loss in the event of a disaster. Allowing
the current replication to complete provides the most
recent RPO in the event of a needed recovery. After
completion, if the new request is skipped, additional data
loss could occur upon a catastrophic event. Conversely,
if the new request is queued, delays are introduced into
the system with the potential of increased future delays
and data loss.

Recovery and impact from a catastrophic event can
be greatly influenced by how current specific data is
within a system. We propose that priorities can be as-
signed a priori to the data and these priorities can be
used to create a benefit ratio allowing an optimized
schedule of the replications for the available bandwidth
during a replication interval. In order for the scheduling
not to affect the RPO of an object, and the continuity of
operations planning based on these RPOs, scheduling
decisions need to be made in near real-time.

The remainder of this paper is structured as fol-
lows. Section 2 presents the issues that must be re-
solved and the proposed solution. Section 3 describes
the simulation used to evaluate the solution including
results from four simulations. Section 4 addresses
scheduling adaptability. Section 5 concludes the paper.

2. THE APPROACH
The research problem can be described as follows:

given a time interval, a bandwidth during this interval,
and a set of objects for replication during the interval,
each with a priority; determine the feasible set with the
most benefit in real-time. The problem is exacerbated
by the distributed nature assumed in the replication
requests. The architecture assumes replications will be
required from one or more sources with one or more
communication channels possibly shared.

The major contribution of this work lies in providing
a new methodology for passive asynchronous replication

2 ICPADS ’05

that increases the resiliency of higher-valued data based
on an admission control policy in a network that handles
several classes of replication requests with different re-
source requirements over a shared network. Global ad-
mission control decisions are made in real-time with
local state information, requiring minimal processing
and communication traffic impacts on the operational
system. The scheduler is intended to work with existing
replication approaches.

2.1. Framework
In fault-recovery systems characterized by band-

width constraints, acceptance of only minimal opera-
tional delays, or both, employing a passive asynchro-
nous replication solution following the primary-
secondary replication scheme in the primary-backup
model is common. In this scheme, the passive replica-
tion is an asynchronous refresh technology where the
model distinguishes one replica as the primary server,
which handles all client requests. A write operation on
the primary server invokes the transmission of an up-
date message to the backup servers, updating the sec-
ondary replica(s). In other words, there will be only
one source for each replication object and this source
controls the updates to the replica(s) in a one-way write
to a read-only framework. This is the framework as-
sumed in this research. The backup replicas are read-
only to avoid conflicts. In order to decrease the impact
of the replication on the operational system and ensure
there are no temporal issues, often referred to as tem-
poral variance between data items, the updates are de-
termined by point-in-time dependant replication where
each replication object will have a defined RPO which
is considered acceptable from a data-loss perspective.

There are two major shortcomings to the primary-
secondary scheme from a resiliency perspective. The
first is the assumption that all data objects have the
same inherent value. This is rarely, if ever, the case as
the first task in continuity of operations planning is to
prioritize the objects to be recovered. How current spe-
cific data objects within a system are can greatly influ-
ence the recovery and impact from a catastrophic
event. The second shortcoming deals with not meeting
the RPO (a system requirement) on-time during peri-
ods of over-loaded conditions. When we define the
RPO for each object and plan for each object’s recov-
ery in the continuity of operations plan, we rely on
meeting the defined RPO for the recovery. The worst-
case loss of data can be limited to two replication in-
tervals for a replication object as long as the system
operates in an under-loaded or fully-loaded condition.
This two-replication interval limit can be readily seen
under the assumption that all previous RPOs for that
object have been met. The proof is by induction.

2.2. Replication Model
The proposed data replication model is comprised

of three main components: replication request, schedul-
ing of replications and the actual replication as shown
in Figure 1. Processing elements make requests for
replications on a known periodic. Each request will be
for the replication of a set of replication objects. The
replication service schedules and controls the replica-
tion process. The replication protocol performs the
replication between the primary and the replica.

Figure 1: Data Replication Model

The granularity of the scheduled item is defined by
the replication object. Replication objects are created
based on the services provided within the system. They
are user-defined containing one or more files, an as-
signed priority and a timing constraint. The priority can
be viewed as a Quality of Service (QoS) parameter
providing a relative assessment of how important it is
to have the data replicated during a given interval, the
timing constraint.

2.3. Priority Based Asynchronous Data
Replication Scheduling

The introduction of a scheduler, or more properly an
acceptance policy, into the process of asynchronous
data replication allows the value of the data to be rep-
resented in the replication scheme through priorities. In
over-loaded conditions, the goal is to maximize the
accrued benefit of replications with end-to-end timeli-
ness requirements.

The scheduler is looking to maximize the use of the
limiting component, the bandwidth of the communica-
tions link in an over-loaded state. The admittance pol-
icy of the scheduler can be viewed as an optimization
problem with replication object size and priority as
parameters of the replication, while the link capacity
and the length of time to complete the replication as the
limiting factors. The optimization is to maximize the
profit or accrued benefit where the benefit is defined to
be the priority of the replication object. The trade-off
in optimization of many lower-priority smaller items
being selected over a large higher-priority item has the
affect of creating a benefit ratio of benefit per unit of

ADAMS, GRACANIN, HINCHEY: INCREASING RESILIENCY THROUGH PRIORITY SCHEDULING OF ASYNCHRONOUS DATA REPLICATION 3

bandwidth. An under-loaded condition is calculated by
summing the size of the entire outstanding replication
request. If the total is less than the available bandwidth
during an interval, the system is under-loaded and all
replications are admitted.

The proposed solution is to divide the scheduler into
two parts, an off-line optimization to create the accep-
tance policy and a real-time implementation of the ac-
ceptance policy [1]. By “off-line” we mean in periph-
eral processing that is not part of the operational sys-
tem. The off-line optimization of replication request
can be modeled as variants of a 0-1 Knapsack Problem
(KP) given the number of sources, destinations and
paths from source to destination. An optimal scheduler
requires knowledge of all replication requests for opti-
mal scheduling; thus scheduling must occur at inter-
vals. We define these intervals as the length of time
allocated for the replication. Thus the items in the
queue to be scheduled are the items for which a repli-
cation request has been made, the replication has not
been initiated and the replication interval has not ex-
pired. Solving the KP provides the optimal feasible list
of objects to be replicated in a given interval. The solu-
tions to these integer-programming problems are used
to train neural networks. Once trained, the weights
from the training network are used in a MLP network
to make real-time binary decisions on acceptance of
replication requests, mimicking the behavior of the
historically optimal scheduler given a fixed set of input
parameters. The same input parameters are used in
training the network. In order for the scheduler to con-
tinue to perform well as the replication patterns change
the network must be retrained. As the in-line systems
operates, the off-line systems continues to calculate the
optimal solution for previous data measuring the per-
formance of the in-line component, continuing to train
the MLP and updating the in-line MLP as necessary. If
there is no real-time requirement for the scheduling,
the off-line component can be placed in-line and the
MLP network is unnecessary. We consider timeliness
requirements that generalize the hard real-time timing
constraint to encompass non-binary timing constraints.
The completion of a replication at any time yields a
benefit specified by a benefit function, even if the repli-
cation is late.

The evaluation of the approach begins with a sched-
uler that provides an optimum schedule for replicating a
single read-only replica over a variable bandwidth con-
nection. A 0-1 KP models this behavior. The model is
used to generate historically optimal data for training the
MLP neural network used to implement the acceptance
policy. The 0-1 KP is described in Section 2.4. Expand-
ing the model to support multiple paths from the source
to the destination can be modeled as a Multiple Knap-
sack Problem (MKP). The MKP is described in Section

2.5. In modeling multiple sources, multiple destinations
or multiple paths, multiple instances of the KP or MKP
are used. Table 1 summarizes these scenarios. Simula-
tions based on the four unique models, 0-1 KP, MKP,
multiple 0-1 KP and multiple MKP are presented in Sec-
tion 3. KP is NP-hard and can be solved a number of
ways. Keller, Pferschy and Pisinger [6] provide a fur-
ther discussion of solving many variants of the KP.

TABLE 1: MODELS OF REPLICATION CASES

Source Desti-
nation Paths Band-

width
Optimization

Model
Single Single Single Variable 0-1 KP
Single Single Many Variable MKP
Single Many Single Variable Multiple 0-1 KP
Single Many Many Variable Multiple MKP
Many Single Single Variable Multiple 0-1 KP
Many Single Many Variable Multiple MKP
Many Many Single Variable Multiple 0-1 KP
Many Many Many Variable Multiple MKP

2.4. Zero-One Knapsack Problem Model
An instance of the 0-1 KP can be defined by the ca-

pacity c and a set of n items where an item i is de-
scribed by its profit pi and weight si. A subset of
items is selected such that the total profit of the se-
lected items is maximized and the total weight does not
exceed c. The KP can be formulated as a solution for
the following integer program:

Maximize O =
1

n

i i
i

p x
=
∑

Subject to
1

n

i i
i

s x c
=

≤∑ (1)

and { }0,1 , 1,...,ix i n∈ =

The profit pi belongs to the set of priorities
{P1,…,Pm}. Higher priority values represent higher
priority items. The decision vector x identifies which
items are to be inserted into the knapsack. A value of
one identifies insertion. All of the coefficients are posi-
tive integers and O is the objective function for maxi-
mal benefit in the system. The weight of each item is
less than the capacity so that it is possible to be sched-
uled. If an object’s weight is greater than the current
capacity, the object cannot be scheduled during the
current replication interval. Finally, the summation of
weight for all items submitted to the scheduler must be
greater than the capacity. In the event that the weight
of all items submitted to the scheduler is smaller or
equal to the capacity, all items are scheduled.

4 ICPADS ’05

2.5. Multiple Knapsack Problem Model
MKP is a generalization of the 0-1 KP from a single

knapsack to m knapsacks with possibly different ca-
pacities. The objective is to assign each item to at most
one of the knapsacks such that none of the capacity
constraints are violated and the total profit of the items
put into the knapsacks is maximized. Given a set of
items N={1,…,n} with profits pj, and weights wj,
for j=1,…,n and a set of knapsacks M={1,…,m}
with positive capacities ci, i=1,…,m, the objective
is to select a subset N’⊆N such that the items of N’
can be assigned to the knapsacks without exceeding the
capacities and the total profit of N’ is maximized.
Therefore:

∑∑
= =

=
m

i

n

j
ijj xpO

1 1
max

{ }0,1 , 1,..., , 1,...,ijx i m j n∈ = =

Subject to (2)
1

, 1,...,
n

j ij i
j

w x c i m
=

≤ =∑

1

1, 1,...,
m

ij
i

x j n
=

≤ =∑

where xij = 1 if item j is assigned to knapsack i
and zero otherwise. The profit pj belongs to the set of
priorities {P1,…,Pk}and x is the decision vector as
described in the previous section. All of the coefficients
are positive integers and O is the objective function for
maximal benefit in the system. An item cannot be
scheduled in a given replication interval if its weight is
greater than the available capacity in each knapsack.

2.6. Multilayer Perceptron
MultiLayer Perceptrons (MLPs) are feed-forward

neural networks trained with the standard back-
propagation algorithm. They are supervised networks
so they require a desired response to be trained. They
learn how to transform input data into a desired re-
sponse, so MLPs are widely used for pattern classifica-
tion [2]. Hornik et al. [5] and Funahashi [4] showed in
1989 that single hidden layer networks are capable of
approximating any continuous function to any given
accuracy, provided that sufficiently many processing
elements are available, thus MLPs can approximate
virtually any input-output map.

A MLP is a network of simple neurons called per-
ceptrons. The perceptron computes a single output
from multiple real-valued inputs by forming a linear
combination according to its input weights and then
possibly putting the output through some nonlinear
activation function. A typical MLP network consists of
a set of source nodes forming the input layer, one or

more hidden layers of computation nodes, and an out-
put layer of nodes. The input signal propagates through
the network layer-by-layer. Bishop provides a detailed
discussion of neural networks [3].

3. SIMULATION
Simulation results for the four unique scenarios as

outlined in Table 1 are presented. The simulations con-
sist of three components: submission of replication
request, scheduling the replications, and finally, the
replication. The case studies are an evaluation of the
scheduling portion of the simulation.

Our Monte Carlo simulation for the scheduling uses
three inputs and calculates one output for each replica-
tion request. The input parameters are: Priority, Size,
and Capacity_used. The output value, A/R, is our bi-
nary decision to replicate this interval or be queued.
Replication requests have a timing requirement and a
priority. The scheduler uses the priorities of the repli-
cation request as the scheduling criteria, maximizing
the priority and also maximizing the use of the link
capacity. Objects submitted for replication consist of:
the full pathname for the data file(s), the priority of the
object, and the size of the object. For the simulations,
the priority of each object is 2, 3, or 4; the higher the
number the higher the priority. A uniform distribution
is used to generate random priorities for each replica-
tion object. To take into consideration the effects of file
modifications requiring a variable size update over
multiple replication intervals, the simulation uses a
uniform random percentage of each file to be replicated
when it is submitted to the scheduler. The Capac-
ity_used parameter is the percentage of the total capac-
ity used when the replication request is made for the
object. The Capacity_used parameter for a replication
object is the ratio of current capacity used over total
capacity of the channel. It is the sum of
1. The bandwidth of the channel (a constant) in bytes

minus the bandwidth allocated for replications this
interval in bytes. The bandwidth allocated for rep-
lication this interval is a uniform random variable
whose range varies by the scenario;

2. The cumulative bandwidth used for replications at
this point in the current replication interval; and

3. The size in bytes of the current replication request.
The sum is divided by the capacity of the channel for
the interval. The inputs from our simulation are opti-
mized by the off-line processing, producing a comma-
separated record for each replication request. Each
record contains six fields: admittance or rejection
(A/R), priority of request (Priority), size of request
(Size), the percentage of the capacity used when the
item is queued for transmission (Capacity_used), the
full file pathname (File) and the destination (Dest).

ADAMS, GRACANIN, HINCHEY: INCREASING RESILIENCY THROUGH PRIORITY SCHEDULING OF ASYNCHRONOUS DATA REPLICATION 5

These records are used in training the MLP network.
The input parameters of the MLP are: Priority, Size,
and Capacity_used. All of these parameters are nu-
meric. The A/R output parameter is the decision vector
and is used to train the desired output (Figure 2).

Figure 2 – Signal-flow graph of a single hidden

layer MLP with three hidden elements

The MLP provides real outputs for the accept/reject
criteria. To use the MLP results as the acceptance pol-
icy for the scheduler, the results are rounded to provide
integer results using the standard rounding rules:

-0.5 ≤ xi < 0.5, xi=0
 0.5 ≤ xi < 1.5, xi=1

otherwise xi=2 (error condition).
Once the MLP network is trained, the weights for

each of the network elements are saved. These weights
are loaded into the in-line MLP for real-time decision-
making. The in-line neural network is validated by
using data not used in the training.

As a basis of the case studies, 528 Replication Ob-
jects were selected from a single system. The distribu-
tion of the replication objects is 174 at priority 4, 13 at
priority 3 and 341 at priority 2. Each case study de-
scribed in this section will simulate 100 replication
intervals. During each interval, the selection of a ran-
dom number of random replication objects (0-528)
from the list of replication objects will be made. The
size of the replication for each replication object is a
random percentage of the object, 0-100% representing
the percentage change in each object since the last rep-
lication. The off-line optimization results in a number
of exemplars (samples) in each case that are random-
ized and used to train and verify a MLP neural network
to recognize the scheduling pattern. The neural net-
work used in each case study is a single hidden layer
MLP with four hidden processing elements. The MLP
was trained in each case using 80% of the sample data.
The remaining 20% of the sample data is used for Out
of Sample Data Validation. Each training session is for
1000 epochs. The value of Ã calculated in each case
study is the percentage of decisions made the same as
an optimal clairvoyant scheduler. After the MLP is
validated, it is verified by a test using new data from

each simulation for 25 replication intervals. The re-
sults of the four case study verifications are presented
in Figure 3 (Ã of 99.46%, 99.21%, 99.47% and
99.69% respectively).

97.5%

98.5%

99.5%

0 5 10 15 20 25

0-1 KP MKP Multiple 0-1 KP Multiple MKP

Figure 3 – Case Study Results

3.1. Case 1: 0-1 KP Model
The first case study is a single replication source to

a single destination over a single variable bandwidth
communications channel. The bandwidth ranges be-
tween 0 and 983,010 bytes per replication interval. The
optimization based on the Pisinger’s minimal algorithm
for the 0-1 KP [8] took 8.366 seconds and results in
31,350 exemplars (samples); of which 25,080 are used
for training and 6,270 for Out of Sample Data Valida-
tion. The optimal results for the validation data are
4,548 objects accepted and 1,722 objects rejected. The
results of the simulation were: 6,238 correct decisions;
34 incorrect decisions; resulting in a validation Ã of
99.49%.

3.2. Case 2: MKP Model
The second case study is a single replication source

to a single destination over three variable bandwidth
communications channel. The bandwidth ranges be-
tween 0 and 327,680 bytes per interval per path. The
optimization is based on the Pisinger’s exact algorithm
for large MKP [7] took 8.116 seconds and results in
32,101 exemplars; of which 25,681 are used for train-
ing and 6,420 for Out of Sample Data Validation. The
optimizations determine which path to optimally repli-
cate the data. The MLP implements the acceptance
policy, once accepted, the real-time scheduler uses a
first fit algorithm to assign an outgoing path. The
evaluation of the MLP is for the acceptance policy
verses a routing policy. The optimal results for the
validation data are 4,373 objects accepted and 2,047
objects rejected. The results of the simulation were:
6,362 correct decisions; 58 incorrect decisions; result-
ing in an Ã of 99.1%.

3.3. Case 3: Multiple 0-1 KP
The third case study models multiple 0-1 KP simul-

taneously. The 0-1 KP model is used when a single

6 ICPADS ’05

communications path is available. The multiple 0-1 KP
model is used for single sources to multiple destina-
tions over single paths; for multiple sources, each to a
single destination over single paths; and for many
sources to many destinations with each source to desti-
nation having a single path.

The results presented are for three replication
sources to a destination, each with a single variable
bandwidth communications channel. The bandwidth
ranges between 0 and 983,010 bytes per replication
interval per destination. The optimization based on
Pisinger’s minimal algorithm for the 0-1 KP [8] as in
the first case study took 6 minutes 15.946 seconds for
the three sources total and results in 93,584 exemplars
(31,565; 31,001; 31,018); of which 74,867 are used for
training and 18,717 for Out of Sample Data Validation.
The weights from the trained MLP are uploaded into
the MLP neural networks at each source. The results
are presented in Table 2.

TABLE 2 – CASE STUDY 3 RESULTS

 Accept Reject Correct Incorrect Ã
A 4,478 1,841 6279 40 99.37
B 4,452 1,582 6,003 31 99.49
C 4,661 1,703 6,332 32 99.50
∑ 13,591 5126 18,614 103 99.45

3.4. Case 4: Multiple MKP Model
The final case study models multiple MKP simulta-

neously. The MKP model is used when multiple com-
munication channels are available. The Multiple MKP
model is used for single sources to multiple destina-
tions over multiple paths; for multiple sources, each to
a single destination over multiple paths; and for many
sources to many destinations with each source to desti-
nation having multiple paths.

The results presented are for three replication
sources to one destination with each source having four
variable bandwidth communications channels. Each
source has two point-to-point paths and two channels
shared between the three sources. The bandwidth
ranges between 0 and 245,760 bytes per interval per
path. The off-line optimization is based on Pisinger’s
exact algorithm for large MKP [7], as in the second
case study. The off-line processing first optimizes the
point-to-point connections as in the second case study.
Rejected objects from all sources are then optimized
for replication over the two shared channels. The off-
line processing results in 115,402 exemplars (39,945;
37,618; 37,839); of which 92,322 are used for training
and 23,080 for Out of Sample Data Validation. As in
the second case study, the MLP implements the accep-
tance policy, once accepted, the real-time scheduler

uses a first-fit algorithm to assign an outgoing path.
The results are presented in Table 3.

TABLE 3 – CASE STUDY 4 RESULTS

Accept Reject Correct Incorrect Ã
A 4,469 3,535 7,984 20 99.75
B 4,251 3,291 7,542 0 100
C 4,258 3,276 7,534 0 100
∑ 12,978 10,102 23,060 20 99.91

4. SCHEDULING ADAPTATION
The results shown in Section 3 demonstrate how ef-

fective the functional approximation supplied by the
MLP can be if the new request follows the pattern of the
previous requests used in training. In Section 3, the vali-
dation data was a random sampling of original data set
removed before training. This approach guarantees that
the validation data will follow the same pattern as the
training data. But of course, this will not always be the
case. In this Section we present a reactive solution that
can be used to update the neural network.

The off-line optimization results are used to train a
neural network of the appropriate acceptance policy. The
weights associated with the parameters of the network,
calculated from the training process, are loaded into the
MLP network used to make real-time binary decisions
on acceptance of each replication request. In order to
“boot strap” the initial training process, the initial set of
weights for the MLP are initialized to pre-calculated
values of a given replication pattern if it is known or
random values if not. As replication requests are made to
the real-time MLP, the input parameters and the MLP
results are logged. At predefined replication intervals,
the log is processed by the off-line component and the
log restarted on the in-line component. The off-line
component calculates the optimal solution and uses
these results to continue supplementary training of the
off-line MLP. Each iteration of training begins with the
weights from the previous training session. The off-line
processor also compares the optimal results with the
decisions made by the in-line MLP.

The results of the off-line training results in a new
set of weights taking into account previous data and the
new set of training data. These weights can be loaded
into the in-line MLP in near real-time by sending a sig-
nal to the in-line MLP to reload its weights. The process
of updating the weights of the in-line MLP can occur at
predefined intervals or when the results skew too much
from optimal, an indication that a new replication pattern
is emerging. In order to be able to train off-line and sim-
ply load the weights into the in-line MLP, the neural
network designs must be identical.

ADAMS, GRACANIN, HINCHEY: INCREASING RESILIENCY THROUGH PRIORITY SCHEDULING OF ASYNCHRONOUS DATA REPLICATION 7

The effectiveness of this approach has been initially
evaluated under simulation. In the simulation, the cus-
tom MLP network used in the case studies was trained
under a variable bandwidth in the range of 0 – 1048544
with same parameters as used in the case study pre-
sented in Section 3.1. The initial training weights were
randomly assigned. Training consisted of 100 replica-
tion intervals for 100 epochs.

Figure 4 shows a simulation run of 1000 replication
intervals with updates from the off-line training MLP
every 100 replication intervals. Training is for 100 ep-
ochs. The spikes indicating performance drops are sin-
gle replication intervals. For example, the three in-
stances where performance drops below 88% are at
intervals 300, 429 and 603. The reason for the spikes
appears to be a small number of replication requests
during these intervals so an incorrect decision carries a
higher weight during these intervals. Figure 5 presents
the same data as a cumulative percentage of the opti-
mal solution. As the simulation continues over time the
decision-making improves toward optimal with less
variability as the in-line MLP receives updated weights
from off-line training.

0.76

0.82

0.88

0.94

1

0 200 400 600 800 1000

Replication Intervals

Pe
rc

en
t o

f O
pt

im
al

Figure 4 – Adaptive Scheduling Static Pattern

0.99

0.991

0.992

0.993

0.994

0.995

0 200 400 600 800 1000

Replication Intervals

Cu
m

m
ul

at
iv

e
%

 O
pt

im
al

Figure 5 – Cumulative Percentage of Optimal

Figure 6 shows the effect of changes in the replica-
tion request pattern every 100 replication intervals. The
range of the variable bandwidth was decreased each
100 replication intervals for a random amount between
25 - 75%. This changes the bias of the sample. A dra-
matically changing pattern, like the one during replica-

tion request intervals from 500 to 600 can greatly affect
the performance of the system, but after retraining per-
formance quickly improves.

Ten Patterns

25.00%

40.00%

55.00%

70.00%

85.00%

100.00%

0 100 200 300 400 500 600 700 800 900 1000

Replication Intervals

Pe
rc

en
ta

ge
 o

f O
pt

im
al

Figure 6 –Scheduling with a Dynamic Pattern

5 CONCLUSION
The simulations have demonstrated the approach of

a real-time optimization using a Multi-Layer Percep-
tron Network to perform extremely well for determin-
ing acceptance given a QoS policy for a replication
scheduler in real-time. The main issue with this ap-
proach is ensuring that the patterns in the data are ade-
quately represented in the training data and recognizing
when a pattern is changing or a new pattern is present.
The presented solution continues the offline processing
of the data, comparing scheduler and optimal results
with subsequent updating of network weights as re-
quired reactively. When patterns are known and repeat-
ing, changing to a predetermined MLP works well.

REFERENCES
1. Adams, K., D. Gračanin, and D. Teodorović, “A Near

Optimal Approach to Quality of Service Data Replica-
tion Scheduling”, Winter Simulation Conference
(WSC04), Washington D.C., Dec. 2004, pp. 1847-1855.

2. Bishop, C. M., “Neural Networks for Pattern Recogni-
tion”, Oxford University Press, New York, 1995.

3. Bishop, C. M., “Neural Networks and Machine Learn-
ing”. Springer, 1998.

4. Funahashi, K., “On the approximate realization of con-
tinuous mappings by neural networks”, Neural Net-
works, 2(3):183-192, 1989.

5. Hornik, K., M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators”,
Neural Networks, 2(5):359-366, 1989.

6. Keller, H., U. Pferschy, and D. Pisinger, “Knapsack
Problems”, Springer-Verlag, 2004.

7. Pisinger, D., “An exact algorithm for large multiple
knapsack problems”, European Journal of Operational
Research, 114:528-541, 1999.

8. Pisinger. D., “A minimal algorithm for the 0-1 knapsack
problem”, Operations Research, 45:758-767, 1997.

	1. Introduction
	2. The Approach
	2.1. Framework
	2.2. Replication Model
	2.3. Priority Based Asynchronous Data Replication Scheduling
	2.4. Zero-One Knapsack Problem Model
	2.5. Multiple Knapsack Problem Model
	2.6. Multilayer Perceptron

	3. Simulation
	3.1. Case 1: 0-1 KP Model
	3.2. Case 2: MKP Model
	3.3. Case 3: Multiple 0-1 KP
	3.4. Case 4: Multiple MKP Model

	4. Scheduling Adaptation
	5 Conclusion
	References

